Metamath Proof Explorer


Theorem phpar

Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses phpar.1 X = BaseSet U
phpar.2 G = + v U
phpar.4 S = 𝑠OLD U
phpar.6 N = norm CV U
Assertion phpar U CPreHil OLD A X B X N A G B 2 + N A G -1 S B 2 = 2 N A 2 + N B 2

Proof

Step Hyp Ref Expression
1 phpar.1 X = BaseSet U
2 phpar.2 G = + v U
3 phpar.4 S = 𝑠OLD U
4 phpar.6 N = norm CV U
5 2 fvexi G V
6 3 fvexi S V
7 4 fvexi N V
8 5 6 7 3pm3.2i G V S V N V
9 2 3 4 phop U CPreHil OLD U = G S N
10 9 eleq1d U CPreHil OLD U CPreHil OLD G S N CPreHil OLD
11 10 ibi U CPreHil OLD G S N CPreHil OLD
12 1 2 bafval X = ran G
13 12 isphg G V S V N V G S N CPreHil OLD G S N NrmCVec x X y X N x G y 2 + N x G -1 S y 2 = 2 N x 2 + N y 2
14 13 simplbda G V S V N V G S N CPreHil OLD x X y X N x G y 2 + N x G -1 S y 2 = 2 N x 2 + N y 2
15 8 11 14 sylancr U CPreHil OLD x X y X N x G y 2 + N x G -1 S y 2 = 2 N x 2 + N y 2
16 15 3ad2ant1 U CPreHil OLD A X B X x X y X N x G y 2 + N x G -1 S y 2 = 2 N x 2 + N y 2
17 fvoveq1 x = A N x G y = N A G y
18 17 oveq1d x = A N x G y 2 = N A G y 2
19 fvoveq1 x = A N x G -1 S y = N A G -1 S y
20 19 oveq1d x = A N x G -1 S y 2 = N A G -1 S y 2
21 18 20 oveq12d x = A N x G y 2 + N x G -1 S y 2 = N A G y 2 + N A G -1 S y 2
22 fveq2 x = A N x = N A
23 22 oveq1d x = A N x 2 = N A 2
24 23 oveq1d x = A N x 2 + N y 2 = N A 2 + N y 2
25 24 oveq2d x = A 2 N x 2 + N y 2 = 2 N A 2 + N y 2
26 21 25 eqeq12d x = A N x G y 2 + N x G -1 S y 2 = 2 N x 2 + N y 2 N A G y 2 + N A G -1 S y 2 = 2 N A 2 + N y 2
27 oveq2 y = B A G y = A G B
28 27 fveq2d y = B N A G y = N A G B
29 28 oveq1d y = B N A G y 2 = N A G B 2
30 oveq2 y = B -1 S y = -1 S B
31 30 oveq2d y = B A G -1 S y = A G -1 S B
32 31 fveq2d y = B N A G -1 S y = N A G -1 S B
33 32 oveq1d y = B N A G -1 S y 2 = N A G -1 S B 2
34 29 33 oveq12d y = B N A G y 2 + N A G -1 S y 2 = N A G B 2 + N A G -1 S B 2
35 fveq2 y = B N y = N B
36 35 oveq1d y = B N y 2 = N B 2
37 36 oveq2d y = B N A 2 + N y 2 = N A 2 + N B 2
38 37 oveq2d y = B 2 N A 2 + N y 2 = 2 N A 2 + N B 2
39 34 38 eqeq12d y = B N A G y 2 + N A G -1 S y 2 = 2 N A 2 + N y 2 N A G B 2 + N A G -1 S B 2 = 2 N A 2 + N B 2
40 26 39 rspc2v A X B X x X y X N x G y 2 + N x G -1 S y 2 = 2 N x 2 + N y 2 N A G B 2 + N A G -1 S B 2 = 2 N A 2 + N B 2
41 40 3adant1 U CPreHil OLD A X B X x X y X N x G y 2 + N x G -1 S y 2 = 2 N x 2 + N y 2 N A G B 2 + N A G -1 S B 2 = 2 N A 2 + N B 2
42 16 41 mpd U CPreHil OLD A X B X N A G B 2 + N A G -1 S B 2 = 2 N A 2 + N B 2