Metamath Proof Explorer


Theorem phpar2

Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses isph.1 X = BaseSet U
isph.2 G = + v U
isph.3 M = - v U
isph.6 N = norm CV U
Assertion phpar2 U CPreHil OLD A X B X N A G B 2 + N A M B 2 = 2 N A 2 + N B 2

Proof

Step Hyp Ref Expression
1 isph.1 X = BaseSet U
2 isph.2 G = + v U
3 isph.3 M = - v U
4 isph.6 N = norm CV U
5 1 2 3 4 isph U CPreHil OLD U NrmCVec x X y X N x G y 2 + N x M y 2 = 2 N x 2 + N y 2
6 5 simprbi U CPreHil OLD x X y X N x G y 2 + N x M y 2 = 2 N x 2 + N y 2
7 6 3ad2ant1 U CPreHil OLD A X B X x X y X N x G y 2 + N x M y 2 = 2 N x 2 + N y 2
8 fvoveq1 x = A N x G y = N A G y
9 8 oveq1d x = A N x G y 2 = N A G y 2
10 fvoveq1 x = A N x M y = N A M y
11 10 oveq1d x = A N x M y 2 = N A M y 2
12 9 11 oveq12d x = A N x G y 2 + N x M y 2 = N A G y 2 + N A M y 2
13 fveq2 x = A N x = N A
14 13 oveq1d x = A N x 2 = N A 2
15 14 oveq1d x = A N x 2 + N y 2 = N A 2 + N y 2
16 15 oveq2d x = A 2 N x 2 + N y 2 = 2 N A 2 + N y 2
17 12 16 eqeq12d x = A N x G y 2 + N x M y 2 = 2 N x 2 + N y 2 N A G y 2 + N A M y 2 = 2 N A 2 + N y 2
18 oveq2 y = B A G y = A G B
19 18 fveq2d y = B N A G y = N A G B
20 19 oveq1d y = B N A G y 2 = N A G B 2
21 oveq2 y = B A M y = A M B
22 21 fveq2d y = B N A M y = N A M B
23 22 oveq1d y = B N A M y 2 = N A M B 2
24 20 23 oveq12d y = B N A G y 2 + N A M y 2 = N A G B 2 + N A M B 2
25 fveq2 y = B N y = N B
26 25 oveq1d y = B N y 2 = N B 2
27 26 oveq2d y = B N A 2 + N y 2 = N A 2 + N B 2
28 27 oveq2d y = B 2 N A 2 + N y 2 = 2 N A 2 + N B 2
29 24 28 eqeq12d y = B N A G y 2 + N A M y 2 = 2 N A 2 + N y 2 N A G B 2 + N A M B 2 = 2 N A 2 + N B 2
30 17 29 rspc2v A X B X x X y X N x G y 2 + N x M y 2 = 2 N x 2 + N y 2 N A G B 2 + N A M B 2 = 2 N A 2 + N B 2
31 30 3adant1 U CPreHil OLD A X B X x X y X N x G y 2 + N x M y 2 = 2 N x 2 + N y 2 N A G B 2 + N A M B 2 = 2 N A 2 + N B 2
32 7 31 mpd U CPreHil OLD A X B X N A G B 2 + N A M B 2 = 2 N A 2 + N B 2