Metamath Proof Explorer


Theorem phpeqd

Description: Corollary of the Pigeonhole Principle using equality. Strengthening of php expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses phpeqd.1 φ A Fin
phpeqd.2 φ B A
phpeqd.3 φ A B
Assertion phpeqd φ A = B

Proof

Step Hyp Ref Expression
1 phpeqd.1 φ A Fin
2 phpeqd.2 φ B A
3 phpeqd.3 φ A B
4 2 adantr φ ¬ A = B B A
5 simpr φ ¬ A = B ¬ A = B
6 5 neqcomd φ ¬ A = B ¬ B = A
7 dfpss2 B A B A ¬ B = A
8 4 6 7 sylanbrc φ ¬ A = B B A
9 php3 A Fin B A B A
10 1 8 9 syl2an2r φ ¬ A = B B A
11 sdomnen B A ¬ B A
12 ensym A B B A
13 11 12 nsyl B A ¬ A B
14 10 13 syl φ ¬ A = B ¬ A B
15 14 ex φ ¬ A = B ¬ A B
16 3 15 mt4d φ A = B