Metamath Proof Explorer


Theorem phphashd

Description: Corollary of the Pigeonhole Principle using equality. Equivalent of phpeqd expressed using the hash function. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses phphashd.1 φ A Fin
phphashd.2 φ B A
phphashd.3 φ A = B
Assertion phphashd φ A = B

Proof

Step Hyp Ref Expression
1 phphashd.1 φ A Fin
2 phphashd.2 φ B A
3 phphashd.3 φ A = B
4 1 2 ssfid φ B Fin
5 hashen A Fin B Fin A = B A B
6 1 4 5 syl2anc φ A = B A B
7 3 6 mpbid φ A B
8 1 2 7 phpeqd φ A = B