Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The ` # ` (set size) function
phphashd
Metamath Proof Explorer
Description: Corollary of the Pigeonhole Principle using equality. Equivalent of
phpeqd expressed using the hash function. (Contributed by Rohan
Ridenour , 3-Aug-2023)
Ref
Expression
Hypotheses
phphashd.1
⊢ φ → A ∈ Fin
phphashd.2
⊢ φ → B ⊆ A
phphashd.3
⊢ φ → A = B
Assertion
phphashd
⊢ φ → A = B
Proof
Step
Hyp
Ref
Expression
1
phphashd.1
⊢ φ → A ∈ Fin
2
phphashd.2
⊢ φ → B ⊆ A
3
phphashd.3
⊢ φ → A = B
4
1 2
ssfid
⊢ φ → B ∈ Fin
5
hashen
⊢ A ∈ Fin ∧ B ∈ Fin → A = B ↔ A ≈ B
6
1 4 5
syl2anc
⊢ φ → A = B ↔ A ≈ B
7
3 6
mpbid
⊢ φ → A ≈ B
8
1 2 7
phpeqd
⊢ φ → A = B