Metamath Proof Explorer


Theorem phphashrd

Description: Corollary of the Pigeonhole Principle using equality. Equivalent of phphashd with reversed arguments. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses phphashrd.1 φ B Fin
phphashrd.2 φ A B
phphashrd.3 φ A = B
Assertion phphashrd φ A = B

Proof

Step Hyp Ref Expression
1 phphashrd.1 φ B Fin
2 phphashrd.2 φ A B
3 phphashrd.3 φ A = B
4 3 eqcomd φ B = A
5 1 2 4 phphashd φ B = A
6 5 eqcomd φ A = B