| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phplem2.1 |
|
| 2 |
|
bren |
|
| 3 |
|
f1of1 |
|
| 4 |
|
nnfi |
|
| 5 |
|
sssucid |
|
| 6 |
|
f1imaenfi |
|
| 7 |
5 6
|
mp3an2 |
|
| 8 |
3 4 7
|
syl2anr |
|
| 9 |
|
ensymfib |
|
| 10 |
4 9
|
syl |
|
| 11 |
10
|
adantr |
|
| 12 |
8 11
|
mpbird |
|
| 13 |
|
nnord |
|
| 14 |
|
orddif |
|
| 15 |
13 14
|
syl |
|
| 16 |
15
|
imaeq2d |
|
| 17 |
|
f1ofn |
|
| 18 |
1
|
sucid |
|
| 19 |
|
fnsnfv |
|
| 20 |
17 18 19
|
sylancl |
|
| 21 |
20
|
difeq2d |
|
| 22 |
|
imadmrn |
|
| 23 |
22
|
eqcomi |
|
| 24 |
|
f1ofo |
|
| 25 |
|
forn |
|
| 26 |
24 25
|
syl |
|
| 27 |
|
f1odm |
|
| 28 |
27
|
imaeq2d |
|
| 29 |
23 26 28
|
3eqtr3a |
|
| 30 |
29
|
difeq1d |
|
| 31 |
|
dff1o3 |
|
| 32 |
|
imadif |
|
| 33 |
31 32
|
simplbiim |
|
| 34 |
21 30 33
|
3eqtr4rd |
|
| 35 |
16 34
|
sylan9eq |
|
| 36 |
12 35
|
breqtrd |
|
| 37 |
|
fnfvelrn |
|
| 38 |
17 18 37
|
sylancl |
|
| 39 |
25
|
eleq2d |
|
| 40 |
24 39
|
syl |
|
| 41 |
38 40
|
mpbid |
|
| 42 |
|
phplem1 |
|
| 43 |
41 42
|
sylan2 |
|
| 44 |
|
nnfi |
|
| 45 |
|
ensymfib |
|
| 46 |
44 45
|
syl |
|
| 47 |
46
|
adantr |
|
| 48 |
43 47
|
mpbid |
|
| 49 |
|
entrfil |
|
| 50 |
4 49
|
syl3an1 |
|
| 51 |
48 50
|
syl3an3 |
|
| 52 |
51
|
3expa |
|
| 53 |
36 52
|
syldanl |
|
| 54 |
53
|
anandirs |
|
| 55 |
54
|
ex |
|
| 56 |
55
|
exlimdv |
|
| 57 |
2 56
|
biimtrid |
|