Metamath Proof Explorer


Theorem phplem2

Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus one of its elements. (Contributed by NM, 11-Jun-1998) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Hypotheses phplem2.1 A V
phplem2.2 B V
Assertion phplem2 A ω B A A suc A B

Proof

Step Hyp Ref Expression
1 phplem2.1 A V
2 phplem2.2 B V
3 snex B A V
4 2 1 f1osn B A : B 1-1 onto A
5 f1oen3g B A V B A : B 1-1 onto A B A
6 3 4 5 mp2an B A
7 1 difexi A B V
8 7 enref A B A B
9 6 8 pm3.2i B A A B A B
10 incom A A B = A B A
11 difss A B A
12 ssrin A B A A B A A A
13 11 12 ax-mp A B A A A
14 nnord A ω Ord A
15 orddisj Ord A A A =
16 14 15 syl A ω A A =
17 13 16 sseqtrid A ω A B A
18 ss0 A B A A B A =
19 17 18 syl A ω A B A =
20 10 19 eqtrid A ω A A B =
21 disjdif B A B =
22 20 21 jctil A ω B A B = A A B =
23 unen B A A B A B B A B = A A B = B A B A A B
24 9 22 23 sylancr A ω B A B A A B
25 24 adantr A ω B A B A B A A B
26 uncom B A B = A B B
27 difsnid B A A B B = A
28 26 27 eqtrid B A B A B = A
29 28 adantl A ω B A B A B = A
30 phplem1 A ω B A A A B = suc A B
31 25 29 30 3brtr3d A ω B A A suc A B