Metamath Proof Explorer


Theorem phrel

Description: The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion phrel RelCPreHilOLD

Proof

Step Hyp Ref Expression
1 phnv xCPreHilOLDxNrmCVec
2 1 ssriv CPreHilOLDNrmCVec
3 nvrel RelNrmCVec
4 relss CPreHilOLDNrmCVecRelNrmCVecRelCPreHilOLD
5 2 3 4 mp2 RelCPreHilOLD