Step |
Hyp |
Ref |
Expression |
1 |
|
phssip.x |
|
2 |
|
phssip.s |
|
3 |
|
phssip.i |
|
4 |
|
phssip.p |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
5 6 4
|
ipffval |
|
8 |
|
phllmod |
|
9 |
2
|
lsssubg |
|
10 |
8 9
|
sylan |
|
11 |
1
|
subgbas |
|
12 |
10 11
|
syl |
|
13 |
|
eqidd |
|
14 |
12 12 13
|
mpoeq123dv |
|
15 |
|
eqid |
|
16 |
15
|
subgss |
|
17 |
10 16
|
syl |
|
18 |
|
resmpo |
|
19 |
17 17 18
|
syl2anc |
|
20 |
|
eqid |
|
21 |
1 20 6
|
ssipeq |
|
22 |
21
|
adantl |
|
23 |
22
|
oveqd |
|
24 |
23
|
mpoeq3dv |
|
25 |
14 19 24
|
3eqtr4rd |
|
26 |
7 25
|
eqtrid |
|
27 |
15 20 3
|
ipffval |
|
28 |
27
|
a1i |
|
29 |
28
|
reseq1d |
|
30 |
26 29
|
eqtr4d |
|