Description: The inner product on a subspace in terms of the inner product on the parent space. (Contributed by NM, 28-Jan-2008) (Revised by AV, 19-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssipeq.x | ||
ssipeq.i | |||
ssipeq.p | |||
ssipeq.s | |||
Assertion | phssipval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssipeq.x | ||
2 | ssipeq.i | ||
3 | ssipeq.p | ||
4 | ssipeq.s | ||
5 | 1 2 3 | ssipeq | |
6 | 5 | oveqd | |
7 | 6 | ad2antlr |