Metamath Proof Explorer


Theorem phssipval

Description: The inner product on a subspace in terms of the inner product on the parent space. (Contributed by NM, 28-Jan-2008) (Revised by AV, 19-Oct-2021)

Ref Expression
Hypotheses ssipeq.x X=W𝑠U
ssipeq.i ,˙=𝑖W
ssipeq.p P=𝑖X
ssipeq.s S=LSubSpW
Assertion phssipval WPreHilUSAUBUAPB=A,˙B

Proof

Step Hyp Ref Expression
1 ssipeq.x X=W𝑠U
2 ssipeq.i ,˙=𝑖W
3 ssipeq.p P=𝑖X
4 ssipeq.s S=LSubSpW
5 1 2 3 ssipeq USP=,˙
6 5 oveqd USAPB=A,˙B
7 6 ad2antlr WPreHilUSAUBUAPB=A,˙B