Metamath Proof Explorer


Theorem pidlnzb

Description: A principal ideal is nonzero iff it is generated by a nonzero elements (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses pidlnzb.1 B = Base R
pidlnzb.2 0 ˙ = 0 R
pidlnzb.3 K = RSpan R
Assertion pidlnzb R Ring X B X 0 ˙ K X 0 ˙

Proof

Step Hyp Ref Expression
1 pidlnzb.1 B = Base R
2 pidlnzb.2 0 ˙ = 0 R
3 pidlnzb.3 K = RSpan R
4 1 2 3 pidlnz R Ring X B X 0 ˙ K X 0 ˙
5 4 3expa R Ring X B X 0 ˙ K X 0 ˙
6 sneq X = 0 ˙ X = 0 ˙
7 6 fveq2d X = 0 ˙ K X = K 0 ˙
8 7 adantl R Ring X B X = 0 ˙ K X = K 0 ˙
9 3 2 rsp0 R Ring K 0 ˙ = 0 ˙
10 9 ad2antrr R Ring X B X = 0 ˙ K 0 ˙ = 0 ˙
11 8 10 eqtrd R Ring X B X = 0 ˙ K X = 0 ˙
12 11 ex R Ring X B X = 0 ˙ K X = 0 ˙
13 12 necon3d R Ring X B K X 0 ˙ X 0 ˙
14 13 imp R Ring X B K X 0 ˙ X 0 ˙
15 5 14 impbida R Ring X B X 0 ˙ K X 0 ˙