Metamath Proof Explorer


Theorem pige3ALT

Description: Alternate proof of pige3 . This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter 2pi . We translate this to algebra by looking at the function e ^ (i x ) as x goes from 0 to pi / 3 ; it moves at unit speed and travels distance 1 , hence 1 <_ _pi / 3 . (Contributed by Mario Carneiro, 21-May-2016) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion pige3ALT 3 π

Proof

Step Hyp Ref Expression
1 3cn 3
2 1 mulid2i 1 3 = 3
3 tru
4 0xr 0 *
5 pirp π +
6 3rp 3 +
7 rpdivcl π + 3 + π 3 +
8 5 6 7 mp2an π 3 +
9 rpxr π 3 + π 3 *
10 8 9 ax-mp π 3 *
11 rpge0 π 3 + 0 π 3
12 8 11 ax-mp 0 π 3
13 lbicc2 0 * π 3 * 0 π 3 0 0 π 3
14 4 10 12 13 mp3an 0 0 π 3
15 ubicc2 0 * π 3 * 0 π 3 π 3 0 π 3
16 4 10 12 15 mp3an π 3 0 π 3
17 14 16 pm3.2i 0 0 π 3 π 3 0 π 3
18 0re 0
19 18 a1i 0
20 pire π
21 3re 3
22 3ne0 3 0
23 20 21 22 redivcli π 3
24 23 a1i π 3
25 efcn exp : cn
26 25 a1i exp : cn
27 iccssre 0 π 3 0 π 3
28 18 23 27 mp2an 0 π 3
29 ax-resscn
30 28 29 sstri 0 π 3
31 resmpt 0 π 3 x i x 0 π 3 = x 0 π 3 i x
32 30 31 mp1i x i x 0 π 3 = x 0 π 3 i x
33 ssidd
34 ax-icn i
35 simpr x x
36 mulcl i x i x
37 34 35 36 sylancr x i x
38 37 fmpttd x i x :
39 cnelprrecn
40 39 a1i
41 ax-1cn 1
42 41 a1i x 1
43 40 dvmptid dx x d x = x 1
44 34 a1i i
45 40 35 42 43 44 dvmptcmul dx i x d x = x i 1
46 34 mulid1i i 1 = i
47 46 mpteq2i x i 1 = x i
48 45 47 eqtrdi dx i x d x = x i
49 48 dmeqd dom dx i x d x = dom x i
50 34 elexi i V
51 eqid x i = x i
52 50 51 dmmpti dom x i =
53 49 52 eqtrdi dom dx i x d x =
54 dvcn x i x : dom dx i x d x = x i x : cn
55 33 38 33 53 54 syl31anc x i x : cn
56 rescncf 0 π 3 x i x : cn x i x 0 π 3 : 0 π 3 cn
57 30 55 56 mpsyl x i x 0 π 3 : 0 π 3 cn
58 32 57 eqeltrrd x 0 π 3 i x : 0 π 3 cn
59 26 58 cncfmpt1f x 0 π 3 e i x : 0 π 3 cn
60 reelprrecn
61 60 a1i
62 recn x x
63 efcl i x e i x
64 37 63 syl x e i x
65 62 64 sylan2 x e i x
66 mulcl e i x i e i x i
67 64 34 66 sylancl x e i x i
68 62 67 sylan2 x e i x i
69 eqid TopOpen fld = TopOpen fld
70 69 cnfldtopon TopOpen fld TopOn
71 toponmax TopOpen fld TopOn TopOpen fld
72 70 71 mp1i TopOpen fld
73 29 a1i
74 df-ss =
75 73 74 sylib =
76 34 a1i x i
77 efcl y e y
78 77 adantl y e y
79 dvef D exp = exp
80 eff exp :
81 80 a1i exp :
82 81 feqmptd exp = y e y
83 82 oveq2d D exp = dy e y d y
84 79 83 82 3eqtr3a dy e y d y = y e y
85 fveq2 y = i x e y = e i x
86 40 40 37 76 78 78 48 84 85 85 dvmptco dx e i x d x = x e i x i
87 69 61 72 75 64 67 86 dvmptres3 dx e i x d x = x e i x i
88 28 a1i 0 π 3
89 69 tgioo2 topGen ran . = TopOpen fld 𝑡
90 iccntr 0 π 3 int topGen ran . 0 π 3 = 0 π 3
91 18 24 90 sylancr int topGen ran . 0 π 3 = 0 π 3
92 61 65 68 87 88 89 69 91 dvmptres2 dx 0 π 3 e i x d x = x 0 π 3 e i x i
93 92 dmeqd dom dx 0 π 3 e i x d x = dom x 0 π 3 e i x i
94 ovex e i x i V
95 eqid x 0 π 3 e i x i = x 0 π 3 e i x i
96 94 95 dmmpti dom x 0 π 3 e i x i = 0 π 3
97 93 96 eqtrdi dom dx 0 π 3 e i x d x = 0 π 3
98 1re 1
99 98 a1i 1
100 92 fveq1d dx 0 π 3 e i x d x y = x 0 π 3 e i x i y
101 oveq2 x = y i x = i y
102 101 fveq2d x = y e i x = e i y
103 102 oveq1d x = y e i x i = e i y i
104 103 95 94 fvmpt3i y 0 π 3 x 0 π 3 e i x i y = e i y i
105 100 104 sylan9eq y 0 π 3 dx 0 π 3 e i x d x y = e i y i
106 105 fveq2d y 0 π 3 dx 0 π 3 e i x d x y = e i y i
107 ioossre 0 π 3
108 107 a1i 0 π 3
109 108 sselda y 0 π 3 y
110 109 recnd y 0 π 3 y
111 mulcl i y i y
112 34 110 111 sylancr y 0 π 3 i y
113 efcl i y e i y
114 112 113 syl y 0 π 3 e i y
115 absmul e i y i e i y i = e i y i
116 114 34 115 sylancl y 0 π 3 e i y i = e i y i
117 absefi y e i y = 1
118 109 117 syl y 0 π 3 e i y = 1
119 absi i = 1
120 119 a1i y 0 π 3 i = 1
121 118 120 oveq12d y 0 π 3 e i y i = 1 1
122 41 mulid1i 1 1 = 1
123 121 122 eqtrdi y 0 π 3 e i y i = 1
124 106 116 123 3eqtrd y 0 π 3 dx 0 π 3 e i x d x y = 1
125 1le1 1 1
126 124 125 eqbrtrdi y 0 π 3 dx 0 π 3 e i x d x y 1
127 19 24 59 97 99 126 dvlip 0 0 π 3 π 3 0 π 3 x 0 π 3 e i x 0 x 0 π 3 e i x π 3 1 0 π 3
128 3 17 127 mp2an x 0 π 3 e i x 0 x 0 π 3 e i x π 3 1 0 π 3
129 oveq2 x = 0 i x = i 0
130 it0e0 i 0 = 0
131 129 130 eqtrdi x = 0 i x = 0
132 131 fveq2d x = 0 e i x = e 0
133 ef0 e 0 = 1
134 132 133 eqtrdi x = 0 e i x = 1
135 eqid x 0 π 3 e i x = x 0 π 3 e i x
136 fvex e i x V
137 134 135 136 fvmpt3i 0 0 π 3 x 0 π 3 e i x 0 = 1
138 14 137 ax-mp x 0 π 3 e i x 0 = 1
139 oveq2 x = π 3 i x = i π 3
140 139 fveq2d x = π 3 e i x = e i π 3
141 140 135 136 fvmpt3i π 3 0 π 3 x 0 π 3 e i x π 3 = e i π 3
142 16 141 ax-mp x 0 π 3 e i x π 3 = e i π 3
143 138 142 oveq12i x 0 π 3 e i x 0 x 0 π 3 e i x π 3 = 1 e i π 3
144 23 recni π 3
145 34 144 mulcli i π 3
146 efcl i π 3 e i π 3
147 145 146 ax-mp e i π 3
148 negicn i
149 148 144 mulcli i π 3
150 efcl i π 3 e i π 3
151 149 150 ax-mp e i π 3
152 cosval π 3 cos π 3 = e i π 3 + e i π 3 2
153 144 152 ax-mp cos π 3 = e i π 3 + e i π 3 2
154 sincos3rdpi sin π 3 = 3 2 cos π 3 = 1 2
155 154 simpri cos π 3 = 1 2
156 153 155 eqtr3i e i π 3 + e i π 3 2 = 1 2
157 147 151 addcli e i π 3 + e i π 3
158 2cn 2
159 2ne0 2 0
160 157 41 158 159 div11i e i π 3 + e i π 3 2 = 1 2 e i π 3 + e i π 3 = 1
161 156 160 mpbi e i π 3 + e i π 3 = 1
162 41 147 151 161 subaddrii 1 e i π 3 = e i π 3
163 mulneg12 i π 3 i π 3 = i π 3
164 34 144 163 mp2an i π 3 = i π 3
165 164 fveq2i e i π 3 = e i π 3
166 143 162 165 3eqtri x 0 π 3 e i x 0 x 0 π 3 e i x π 3 = e i π 3
167 166 fveq2i x 0 π 3 e i x 0 x 0 π 3 e i x π 3 = e i π 3
168 144 absnegi π 3 = π 3
169 df-neg π 3 = 0 π 3
170 169 fveq2i π 3 = 0 π 3
171 168 170 eqtr3i π 3 = 0 π 3
172 rprege0 π 3 + π 3 0 π 3
173 absid π 3 0 π 3 π 3 = π 3
174 8 172 173 mp2b π 3 = π 3
175 171 174 eqtr3i 0 π 3 = π 3
176 175 oveq2i 1 0 π 3 = 1 π 3
177 128 167 176 3brtr3i e i π 3 1 π 3
178 23 renegcli π 3
179 absefi π 3 e i π 3 = 1
180 178 179 ax-mp e i π 3 = 1
181 144 mulid2i 1 π 3 = π 3
182 177 180 181 3brtr3i 1 π 3
183 3pos 0 < 3
184 21 183 pm3.2i 3 0 < 3
185 lemuldiv 1 π 3 0 < 3 1 3 π 1 π 3
186 98 20 184 185 mp3an 1 3 π 1 π 3
187 182 186 mpbir 1 3 π
188 2 187 eqbrtrri 3 π