Metamath Proof Explorer


Theorem pigt3

Description: _pi is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Assertion pigt3 3 < π

Proof

Step Hyp Ref Expression
1 sincos6thpi sin π 6 = 1 2 cos π 6 = 3 2
2 1 simpli sin π 6 = 1 2
3 ax-1cn 1
4 2cnne0 2 2 0
5 3cn 3
6 3ne0 3 0
7 5 6 pm3.2i 3 3 0
8 divcan5 1 2 2 0 3 3 0 3 1 3 2 = 1 2
9 3 4 7 8 mp3an 3 1 3 2 = 1 2
10 3t1e3 3 1 = 3
11 3t2e6 3 2 = 6
12 10 11 oveq12i 3 1 3 2 = 3 6
13 2 9 12 3eqtr2i sin π 6 = 3 6
14 pire π
15 pipos 0 < π
16 14 15 elrpii π +
17 6re 6
18 6pos 0 < 6
19 17 18 elrpii 6 +
20 rpdivcl π + 6 + π 6 +
21 16 19 20 mp2an π 6 +
22 sinltx π 6 + sin π 6 < π 6
23 21 22 ax-mp sin π 6 < π 6
24 13 23 eqbrtrri 3 6 < π 6
25 3re 3
26 25 14 17 18 ltdiv1ii 3 < π 3 6 < π 6
27 24 26 mpbir 3 < π