Metamath Proof Explorer


Theorem pilem1

Description: Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro, 9-May-2014)

Ref Expression
Assertion pilem1 A + sin -1 0 A + sin A = 0

Proof

Step Hyp Ref Expression
1 elin A + sin -1 0 A + A sin -1 0
2 sinf sin :
3 ffn sin : sin Fn
4 fniniseg sin Fn A sin -1 0 A sin A = 0
5 2 3 4 mp2b A sin -1 0 A sin A = 0
6 rpcn A + A
7 6 biantrurd A + sin A = 0 A sin A = 0
8 5 7 bitr4id A + A sin -1 0 sin A = 0
9 8 pm5.32i A + A sin -1 0 A + sin A = 0
10 1 9 bitri A + sin -1 0 A + sin A = 0