Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Properties of pi = 3.14159...
pilem1
Next ⟩
pilem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
pilem1
Description:
Lemma for
pire
,
pigt2lt4
and
sinpi
.
(Contributed by
Mario Carneiro
, 9-May-2014)
Ref
Expression
Assertion
pilem1
⊢
A
∈
ℝ
+
∩
sin
-1
0
↔
A
∈
ℝ
+
∧
sin
⁡
A
=
0
Proof
Step
Hyp
Ref
Expression
1
elin
⊢
A
∈
ℝ
+
∩
sin
-1
0
↔
A
∈
ℝ
+
∧
A
∈
sin
-1
0
2
sinf
⊢
sin
:
ℂ
⟶
ℂ
3
ffn
⊢
sin
:
ℂ
⟶
ℂ
→
sin
Fn
ℂ
4
fniniseg
⊢
sin
Fn
ℂ
→
A
∈
sin
-1
0
↔
A
∈
ℂ
∧
sin
⁡
A
=
0
5
2
3
4
mp2b
⊢
A
∈
sin
-1
0
↔
A
∈
ℂ
∧
sin
⁡
A
=
0
6
rpcn
⊢
A
∈
ℝ
+
→
A
∈
ℂ
7
6
biantrurd
⊢
A
∈
ℝ
+
→
sin
⁡
A
=
0
↔
A
∈
ℂ
∧
sin
⁡
A
=
0
8
5
7
bitr4id
⊢
A
∈
ℝ
+
→
A
∈
sin
-1
0
↔
sin
⁡
A
=
0
9
8
pm5.32i
⊢
A
∈
ℝ
+
∧
A
∈
sin
-1
0
↔
A
∈
ℝ
+
∧
sin
⁡
A
=
0
10
1
9
bitri
⊢
A
∈
ℝ
+
∩
sin
-1
0
↔
A
∈
ℝ
+
∧
sin
⁡
A
=
0