Metamath Proof Explorer


Theorem pinq

Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995) (Revised by Mario Carneiro, 6-May-2013) (New usage is discouraged.)

Ref Expression
Assertion pinq A 𝑵 A 1 𝑜 𝑸

Proof

Step Hyp Ref Expression
1 breq1 x = A 1 𝑜 x ~ 𝑸 y A 1 𝑜 ~ 𝑸 y
2 fveq2 x = A 1 𝑜 2 nd x = 2 nd A 1 𝑜
3 2 breq2d x = A 1 𝑜 2 nd y < 𝑵 2 nd x 2 nd y < 𝑵 2 nd A 1 𝑜
4 3 notbid x = A 1 𝑜 ¬ 2 nd y < 𝑵 2 nd x ¬ 2 nd y < 𝑵 2 nd A 1 𝑜
5 1 4 imbi12d x = A 1 𝑜 x ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd x A 1 𝑜 ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd A 1 𝑜
6 5 ralbidv x = A 1 𝑜 y 𝑵 × 𝑵 x ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd x y 𝑵 × 𝑵 A 1 𝑜 ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd A 1 𝑜
7 1pi 1 𝑜 𝑵
8 opelxpi A 𝑵 1 𝑜 𝑵 A 1 𝑜 𝑵 × 𝑵
9 7 8 mpan2 A 𝑵 A 1 𝑜 𝑵 × 𝑵
10 nlt1pi ¬ 2 nd y < 𝑵 1 𝑜
11 1oex 1 𝑜 V
12 op2ndg A 𝑵 1 𝑜 V 2 nd A 1 𝑜 = 1 𝑜
13 11 12 mpan2 A 𝑵 2 nd A 1 𝑜 = 1 𝑜
14 13 breq2d A 𝑵 2 nd y < 𝑵 2 nd A 1 𝑜 2 nd y < 𝑵 1 𝑜
15 10 14 mtbiri A 𝑵 ¬ 2 nd y < 𝑵 2 nd A 1 𝑜
16 15 a1d A 𝑵 A 1 𝑜 ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd A 1 𝑜
17 16 ralrimivw A 𝑵 y 𝑵 × 𝑵 A 1 𝑜 ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd A 1 𝑜
18 6 9 17 elrabd A 𝑵 A 1 𝑜 x 𝑵 × 𝑵 | y 𝑵 × 𝑵 x ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd x
19 df-nq 𝑸 = x 𝑵 × 𝑵 | y 𝑵 × 𝑵 x ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd x
20 18 19 eleqtrrdi A 𝑵 A 1 𝑜 𝑸