Step |
Hyp |
Ref |
Expression |
1 |
|
pj1eu.a |
|
2 |
|
pj1eu.s |
|
3 |
|
pj1eu.o |
|
4 |
|
pj1eu.z |
|
5 |
|
pj1eu.2 |
|
6 |
|
pj1eu.3 |
|
7 |
|
pj1eu.4 |
|
8 |
|
pj1eu.5 |
|
9 |
1 2
|
lsmelval |
|
10 |
5 6 9
|
syl2anc |
|
11 |
10
|
biimpa |
|
12 |
|
reeanv |
|
13 |
|
eqtr2 |
|
14 |
5
|
ad2antrr |
|
15 |
6
|
ad2antrr |
|
16 |
7
|
ad2antrr |
|
17 |
8
|
ad2antrr |
|
18 |
|
simplrl |
|
19 |
|
simplrr |
|
20 |
|
simprl |
|
21 |
|
simprr |
|
22 |
1 3 4 14 15 16 17 18 19 20 21
|
subgdisjb |
|
23 |
|
simpl |
|
24 |
22 23
|
syl6bi |
|
25 |
13 24
|
syl5 |
|
26 |
25
|
rexlimdvva |
|
27 |
12 26
|
syl5bir |
|
28 |
27
|
ralrimivva |
|
29 |
28
|
adantr |
|
30 |
|
oveq1 |
|
31 |
30
|
eqeq2d |
|
32 |
31
|
rexbidv |
|
33 |
|
oveq2 |
|
34 |
33
|
eqeq2d |
|
35 |
34
|
cbvrexvw |
|
36 |
32 35
|
bitrdi |
|
37 |
36
|
reu4 |
|
38 |
11 29 37
|
sylanbrc |
|