Step |
Hyp |
Ref |
Expression |
1 |
|
pj1fval.v |
|
2 |
|
pj1fval.a |
|
3 |
|
pj1fval.s |
|
4 |
|
pj1fval.p |
|
5 |
|
elex |
|
6 |
5
|
3ad2ant1 |
|
7 |
|
fveq2 |
|
8 |
7 1
|
eqtr4di |
|
9 |
8
|
pweqd |
|
10 |
|
fveq2 |
|
11 |
10 3
|
eqtr4di |
|
12 |
11
|
oveqd |
|
13 |
|
fveq2 |
|
14 |
13 2
|
eqtr4di |
|
15 |
14
|
oveqd |
|
16 |
15
|
eqeq2d |
|
17 |
16
|
rexbidv |
|
18 |
17
|
riotabidv |
|
19 |
12 18
|
mpteq12dv |
|
20 |
9 9 19
|
mpoeq123dv |
|
21 |
|
df-pj1 |
|
22 |
1
|
fvexi |
|
23 |
22
|
pwex |
|
24 |
23 23
|
mpoex |
|
25 |
20 21 24
|
fvmpt |
|
26 |
6 25
|
syl |
|
27 |
4 26
|
eqtrid |
|
28 |
|
oveq12 |
|
29 |
28
|
adantl |
|
30 |
|
simprl |
|
31 |
|
simprr |
|
32 |
31
|
rexeqdv |
|
33 |
30 32
|
riotaeqbidv |
|
34 |
29 33
|
mpteq12dv |
|
35 |
|
simp2 |
|
36 |
22
|
elpw2 |
|
37 |
35 36
|
sylibr |
|
38 |
|
simp3 |
|
39 |
22
|
elpw2 |
|
40 |
38 39
|
sylibr |
|
41 |
|
ovex |
|
42 |
41
|
mptex |
|
43 |
42
|
a1i |
|
44 |
27 34 37 40 43
|
ovmpod |
|