| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pj1fval.v |
|
| 2 |
|
pj1fval.a |
|
| 3 |
|
pj1fval.s |
|
| 4 |
|
pj1fval.p |
|
| 5 |
|
elex |
|
| 6 |
5
|
3ad2ant1 |
|
| 7 |
|
fveq2 |
|
| 8 |
7 1
|
eqtr4di |
|
| 9 |
8
|
pweqd |
|
| 10 |
|
fveq2 |
|
| 11 |
10 3
|
eqtr4di |
|
| 12 |
11
|
oveqd |
|
| 13 |
|
fveq2 |
|
| 14 |
13 2
|
eqtr4di |
|
| 15 |
14
|
oveqd |
|
| 16 |
15
|
eqeq2d |
|
| 17 |
16
|
rexbidv |
|
| 18 |
17
|
riotabidv |
|
| 19 |
12 18
|
mpteq12dv |
|
| 20 |
9 9 19
|
mpoeq123dv |
|
| 21 |
|
df-pj1 |
|
| 22 |
1
|
fvexi |
|
| 23 |
22
|
pwex |
|
| 24 |
23 23
|
mpoex |
|
| 25 |
20 21 24
|
fvmpt |
|
| 26 |
6 25
|
syl |
|
| 27 |
4 26
|
eqtrid |
|
| 28 |
|
oveq12 |
|
| 29 |
28
|
adantl |
|
| 30 |
|
simprl |
|
| 31 |
|
simprr |
|
| 32 |
31
|
rexeqdv |
|
| 33 |
30 32
|
riotaeqbidv |
|
| 34 |
29 33
|
mpteq12dv |
|
| 35 |
|
simp2 |
|
| 36 |
22
|
elpw2 |
|
| 37 |
35 36
|
sylibr |
|
| 38 |
|
simp3 |
|
| 39 |
22
|
elpw2 |
|
| 40 |
38 39
|
sylibr |
|
| 41 |
|
ovex |
|
| 42 |
41
|
mptex |
|
| 43 |
42
|
a1i |
|
| 44 |
27 34 37 40 43
|
ovmpod |
|