Step |
Hyp |
Ref |
Expression |
1 |
|
pj1eu.a |
|
2 |
|
pj1eu.s |
|
3 |
|
pj1eu.o |
|
4 |
|
pj1eu.z |
|
5 |
|
pj1eu.2 |
|
6 |
|
pj1eu.3 |
|
7 |
|
pj1eu.4 |
|
8 |
|
pj1eu.5 |
|
9 |
|
pj1f.p |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
ovex |
|
13 |
|
eqid |
|
14 |
13 1
|
ressplusg |
|
15 |
12 14
|
ax-mp |
|
16 |
2 4
|
lsmsubg |
|
17 |
5 6 8 16
|
syl3anc |
|
18 |
13
|
subggrp |
|
19 |
17 18
|
syl |
|
20 |
|
subgrcl |
|
21 |
5 20
|
syl |
|
22 |
1 2 3 4 5 6 7 8 9
|
pj1f |
|
23 |
11
|
subgss |
|
24 |
5 23
|
syl |
|
25 |
22 24
|
fssd |
|
26 |
13
|
subgbas |
|
27 |
17 26
|
syl |
|
28 |
27
|
feq2d |
|
29 |
25 28
|
mpbid |
|
30 |
27
|
eleq2d |
|
31 |
27
|
eleq2d |
|
32 |
30 31
|
anbi12d |
|
33 |
32
|
biimpar |
|
34 |
1 2 3 4 5 6 7 8 9
|
pj1id |
|
35 |
34
|
adantrr |
|
36 |
1 2 3 4 5 6 7 8 9
|
pj1id |
|
37 |
36
|
adantrl |
|
38 |
35 37
|
oveq12d |
|
39 |
5
|
adantr |
|
40 |
|
grpmnd |
|
41 |
39 20 40
|
3syl |
|
42 |
39 23
|
syl |
|
43 |
|
simpl |
|
44 |
|
ffvelrn |
|
45 |
22 43 44
|
syl2an |
|
46 |
42 45
|
sseldd |
|
47 |
|
simpr |
|
48 |
|
ffvelrn |
|
49 |
22 47 48
|
syl2an |
|
50 |
42 49
|
sseldd |
|
51 |
6
|
adantr |
|
52 |
11
|
subgss |
|
53 |
51 52
|
syl |
|
54 |
1 2 3 4 5 6 7 8 9
|
pj2f |
|
55 |
|
ffvelrn |
|
56 |
54 43 55
|
syl2an |
|
57 |
53 56
|
sseldd |
|
58 |
|
ffvelrn |
|
59 |
54 47 58
|
syl2an |
|
60 |
53 59
|
sseldd |
|
61 |
8
|
adantr |
|
62 |
61 49
|
sseldd |
|
63 |
1 4
|
cntzi |
|
64 |
62 56 63
|
syl2anc |
|
65 |
11 1 41 46 50 57 60 64
|
mnd4g |
|
66 |
38 65
|
eqtr4d |
|
67 |
7
|
adantr |
|
68 |
1
|
subgcl |
|
69 |
68
|
3expb |
|
70 |
17 69
|
sylan |
|
71 |
1
|
subgcl |
|
72 |
39 45 49 71
|
syl3anc |
|
73 |
1
|
subgcl |
|
74 |
51 56 59 73
|
syl3anc |
|
75 |
1 2 3 4 39 51 67 61 9 70 72 74
|
pj1eq |
|
76 |
66 75
|
mpbid |
|
77 |
76
|
simpld |
|
78 |
33 77
|
syldan |
|
79 |
10 11 15 1 19 21 29 78
|
isghmd |
|