Metamath Proof Explorer


Theorem pj1ghm2

Description: The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses pj1eu.a + ˙ = + G
pj1eu.s ˙ = LSSum G
pj1eu.o 0 ˙ = 0 G
pj1eu.z Z = Cntz G
pj1eu.2 φ T SubGrp G
pj1eu.3 φ U SubGrp G
pj1eu.4 φ T U = 0 ˙
pj1eu.5 φ T Z U
pj1f.p P = proj 1 G
Assertion pj1ghm2 φ T P U G 𝑠 T ˙ U GrpHom G 𝑠 T

Proof

Step Hyp Ref Expression
1 pj1eu.a + ˙ = + G
2 pj1eu.s ˙ = LSSum G
3 pj1eu.o 0 ˙ = 0 G
4 pj1eu.z Z = Cntz G
5 pj1eu.2 φ T SubGrp G
6 pj1eu.3 φ U SubGrp G
7 pj1eu.4 φ T U = 0 ˙
8 pj1eu.5 φ T Z U
9 pj1f.p P = proj 1 G
10 1 2 3 4 5 6 7 8 9 pj1ghm φ T P U G 𝑠 T ˙ U GrpHom G
11 1 2 3 4 5 6 7 8 9 pj1f φ T P U : T ˙ U T
12 11 frnd φ ran T P U T
13 eqid G 𝑠 T = G 𝑠 T
14 13 resghm2b T SubGrp G ran T P U T T P U G 𝑠 T ˙ U GrpHom G T P U G 𝑠 T ˙ U GrpHom G 𝑠 T
15 5 12 14 syl2anc φ T P U G 𝑠 T ˙ U GrpHom G T P U G 𝑠 T ˙ U GrpHom G 𝑠 T
16 10 15 mpbid φ T P U G 𝑠 T ˙ U GrpHom G 𝑠 T