Step |
Hyp |
Ref |
Expression |
1 |
|
pj1eu.a |
|
2 |
|
pj1eu.s |
|
3 |
|
pj1eu.o |
|
4 |
|
pj1eu.z |
|
5 |
|
pj1eu.2 |
|
6 |
|
pj1eu.3 |
|
7 |
|
pj1eu.4 |
|
8 |
|
pj1eu.5 |
|
9 |
|
pj1f.p |
|
10 |
|
subgrcl |
|
11 |
5 10
|
syl |
|
12 |
|
eqid |
|
13 |
12
|
subgss |
|
14 |
5 13
|
syl |
|
15 |
12
|
subgss |
|
16 |
6 15
|
syl |
|
17 |
11 14 16
|
3jca |
|
18 |
12 1 2 9
|
pj1val |
|
19 |
17 18
|
sylan |
|
20 |
1 2 3 4 5 6 7 8
|
pj1eu |
|
21 |
|
riotacl2 |
|
22 |
20 21
|
syl |
|
23 |
19 22
|
eqeltrd |
|
24 |
|
oveq1 |
|
25 |
24
|
eqeq2d |
|
26 |
25
|
rexbidv |
|
27 |
26
|
elrab |
|
28 |
27
|
simprbi |
|
29 |
23 28
|
syl |
|
30 |
|
simprr |
|
31 |
11
|
ad2antrr |
|
32 |
16
|
ad2antrr |
|
33 |
14
|
ad2antrr |
|
34 |
|
simplr |
|
35 |
2 4
|
lsmcom2 |
|
36 |
5 6 8 35
|
syl3anc |
|
37 |
36
|
ad2antrr |
|
38 |
34 37
|
eleqtrd |
|
39 |
12 1 2 9
|
pj1val |
|
40 |
31 32 33 38 39
|
syl31anc |
|
41 |
1 2 3 4 5 6 7 8 9
|
pj1f |
|
42 |
41
|
ad2antrr |
|
43 |
42 34
|
ffvelrnd |
|
44 |
8
|
ad2antrr |
|
45 |
44 43
|
sseldd |
|
46 |
|
simprl |
|
47 |
1 4
|
cntzi |
|
48 |
45 46 47
|
syl2anc |
|
49 |
30 48
|
eqtrd |
|
50 |
|
oveq2 |
|
51 |
50
|
rspceeqv |
|
52 |
43 49 51
|
syl2anc |
|
53 |
|
simpll |
|
54 |
|
incom |
|
55 |
54 7
|
eqtrid |
|
56 |
4 5 6 8
|
cntzrecd |
|
57 |
1 2 3 4 6 5 55 56
|
pj1eu |
|
58 |
53 38 57
|
syl2anc |
|
59 |
|
oveq1 |
|
60 |
59
|
eqeq2d |
|
61 |
60
|
rexbidv |
|
62 |
61
|
riota2 |
|
63 |
46 58 62
|
syl2anc |
|
64 |
52 63
|
mpbid |
|
65 |
40 64
|
eqtrd |
|
66 |
65
|
oveq2d |
|
67 |
30 66
|
eqtr4d |
|
68 |
29 67
|
rexlimddv |
|