Metamath Proof Explorer


Theorem pj1rid

Description: The left projection function is the zero operator on the right subspace. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses pj1eu.a + ˙ = + G
pj1eu.s ˙ = LSSum G
pj1eu.o 0 ˙ = 0 G
pj1eu.z Z = Cntz G
pj1eu.2 φ T SubGrp G
pj1eu.3 φ U SubGrp G
pj1eu.4 φ T U = 0 ˙
pj1eu.5 φ T Z U
pj1f.p P = proj 1 G
Assertion pj1rid φ X U T P U X = 0 ˙

Proof

Step Hyp Ref Expression
1 pj1eu.a + ˙ = + G
2 pj1eu.s ˙ = LSSum G
3 pj1eu.o 0 ˙ = 0 G
4 pj1eu.z Z = Cntz G
5 pj1eu.2 φ T SubGrp G
6 pj1eu.3 φ U SubGrp G
7 pj1eu.4 φ T U = 0 ˙
8 pj1eu.5 φ T Z U
9 pj1f.p P = proj 1 G
10 5 adantr φ X U T SubGrp G
11 subgrcl T SubGrp G G Grp
12 10 11 syl φ X U G Grp
13 eqid Base G = Base G
14 13 subgss U SubGrp G U Base G
15 6 14 syl φ U Base G
16 15 sselda φ X U X Base G
17 13 1 3 grplid G Grp X Base G 0 ˙ + ˙ X = X
18 12 16 17 syl2anc φ X U 0 ˙ + ˙ X = X
19 18 eqcomd φ X U X = 0 ˙ + ˙ X
20 6 adantr φ X U U SubGrp G
21 7 adantr φ X U T U = 0 ˙
22 8 adantr φ X U T Z U
23 2 lsmub2 T SubGrp G U SubGrp G U T ˙ U
24 5 6 23 syl2anc φ U T ˙ U
25 24 sselda φ X U X T ˙ U
26 3 subg0cl T SubGrp G 0 ˙ T
27 10 26 syl φ X U 0 ˙ T
28 simpr φ X U X U
29 1 2 3 4 10 20 21 22 9 25 27 28 pj1eq φ X U X = 0 ˙ + ˙ X T P U X = 0 ˙ U P T X = X
30 19 29 mpbid φ X U T P U X = 0 ˙ U P T X = X
31 30 simpld φ X U T P U X = 0 ˙