Metamath Proof Explorer


Theorem pj1val

Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses pj1fval.v B = Base G
pj1fval.a + ˙ = + G
pj1fval.s ˙ = LSSum G
pj1fval.p P = proj 1 G
Assertion pj1val G V T B U B X T ˙ U T P U X = ι x T | y U X = x + ˙ y

Proof

Step Hyp Ref Expression
1 pj1fval.v B = Base G
2 pj1fval.a + ˙ = + G
3 pj1fval.s ˙ = LSSum G
4 pj1fval.p P = proj 1 G
5 1 2 3 4 pj1fval G V T B U B T P U = z T ˙ U ι x T | y U z = x + ˙ y
6 5 adantr G V T B U B X T ˙ U T P U = z T ˙ U ι x T | y U z = x + ˙ y
7 simpr G V T B U B X T ˙ U z = X z = X
8 7 eqeq1d G V T B U B X T ˙ U z = X z = x + ˙ y X = x + ˙ y
9 8 rexbidv G V T B U B X T ˙ U z = X y U z = x + ˙ y y U X = x + ˙ y
10 9 riotabidv G V T B U B X T ˙ U z = X ι x T | y U z = x + ˙ y = ι x T | y U X = x + ˙ y
11 simpr G V T B U B X T ˙ U X T ˙ U
12 riotaex ι x T | y U X = x + ˙ y V
13 12 a1i G V T B U B X T ˙ U ι x T | y U X = x + ˙ y V
14 6 10 11 13 fvmptd G V T B U B X T ˙ U T P U X = ι x T | y U X = x + ˙ y