Metamath Proof Explorer


Theorem pj2f

Description: The right projection function maps a direct subspace sum onto the right factor. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses pj1eu.a + ˙ = + G
pj1eu.s ˙ = LSSum G
pj1eu.o 0 ˙ = 0 G
pj1eu.z Z = Cntz G
pj1eu.2 φ T SubGrp G
pj1eu.3 φ U SubGrp G
pj1eu.4 φ T U = 0 ˙
pj1eu.5 φ T Z U
pj1f.p P = proj 1 G
Assertion pj2f φ U P T : T ˙ U U

Proof

Step Hyp Ref Expression
1 pj1eu.a + ˙ = + G
2 pj1eu.s ˙ = LSSum G
3 pj1eu.o 0 ˙ = 0 G
4 pj1eu.z Z = Cntz G
5 pj1eu.2 φ T SubGrp G
6 pj1eu.3 φ U SubGrp G
7 pj1eu.4 φ T U = 0 ˙
8 pj1eu.5 φ T Z U
9 pj1f.p P = proj 1 G
10 incom U T = T U
11 10 7 eqtrid φ U T = 0 ˙
12 4 5 6 8 cntzrecd φ U Z T
13 1 2 3 4 6 5 11 12 9 pj1f φ U P T : U ˙ T U
14 2 4 lsmcom2 T SubGrp G U SubGrp G T Z U T ˙ U = U ˙ T
15 5 6 8 14 syl3anc φ T ˙ U = U ˙ T
16 15 feq2d φ U P T : T ˙ U U U P T : U ˙ T U
17 13 16 mpbird φ U P T : T ˙ U U