Metamath Proof Explorer


Theorem pjch

Description: Projection of a vector in the projection subspace. Lemma 4.4(ii) of Beran p. 111. (Contributed by NM, 30-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion pjch H C A A H proj H A = A

Proof

Step Hyp Ref Expression
1 eleq2 H = if H C H A H A if H C H
2 fveq2 H = if H C H proj H = proj if H C H
3 2 fveq1d H = if H C H proj H A = proj if H C H A
4 3 eqeq1d H = if H C H proj H A = A proj if H C H A = A
5 1 4 bibi12d H = if H C H A H proj H A = A A if H C H proj if H C H A = A
6 eleq1 A = if A A 0 A if H C H if A A 0 if H C H
7 fveq2 A = if A A 0 proj if H C H A = proj if H C H if A A 0
8 id A = if A A 0 A = if A A 0
9 7 8 eqeq12d A = if A A 0 proj if H C H A = A proj if H C H if A A 0 = if A A 0
10 6 9 bibi12d A = if A A 0 A if H C H proj if H C H A = A if A A 0 if H C H proj if H C H if A A 0 = if A A 0
11 ifchhv if H C H C
12 ifhvhv0 if A A 0
13 11 12 pjchi if A A 0 if H C H proj if H C H if A A 0 = if A A 0
14 5 10 13 dedth2h H C A A H proj H A = A