Metamath Proof Explorer


Theorem pjch1

Description: Property of identity projection. Remark in Beran p. 111. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion pjch1 A proj A = A

Proof

Step Hyp Ref Expression
1 eleq1 A = if A A 0 A if A A 0
2 fveq2 A = if A A 0 proj A = proj if A A 0
3 id A = if A A 0 A = if A A 0
4 2 3 eqeq12d A = if A A 0 proj A = A proj if A A 0 = if A A 0
5 1 4 bibi12d A = if A A 0 A proj A = A if A A 0 proj if A A 0 = if A A 0
6 helch C
7 ifhvhv0 if A A 0
8 6 7 pjchi if A A 0 proj if A A 0 = if A A 0
9 5 8 dedth A A proj A = A
10 9 ibi A proj A = A