Metamath Proof Explorer


Theorem pjchi

Description: Projection of a vector in the projection subspace. Lemma 4.4(ii) of Beran p. 111. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjop.1 H C
pjop.2 A
Assertion pjchi A H proj H A = A

Proof

Step Hyp Ref Expression
1 pjop.1 H C
2 pjop.2 A
3 1 2 pjhclii proj H A
4 ax-hvaddid proj H A proj H A + 0 = proj H A
5 3 4 ax-mp proj H A + 0 = proj H A
6 1 2 pjpji A = proj H A + proj H A
7 1 2 pjoc1i A H proj H A = 0
8 7 biimpi A H proj H A = 0
9 8 oveq2d A H proj H A + proj H A = proj H A + 0
10 6 9 eqtr2id A H proj H A + 0 = A
11 5 10 eqtr3id A H proj H A = A
12 1 2 pjclii proj H A H
13 eleq1 proj H A = A proj H A H A H
14 12 13 mpbii proj H A = A A H
15 11 14 impbii A H proj H A = A