Metamath Proof Explorer


Theorem pjcompi

Description: Component of a projection. (Contributed by NM, 31-Oct-1999) (Revised by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypothesis pjidm.1 H C
Assertion pjcompi A H B H proj H A + B = A

Proof

Step Hyp Ref Expression
1 pjidm.1 H C
2 1 cheli A H A
3 1 choccli H C
4 3 cheli B H B
5 hvaddcl A B A + B
6 2 4 5 syl2an A H B H A + B
7 axpjpj H C A + B A + B = proj H A + B + proj H A + B
8 1 6 7 sylancr A H B H A + B = proj H A + B + proj H A + B
9 eqid A + B = A + B
10 axpjcl H C A + B proj H A + B H
11 1 6 10 sylancr A H B H proj H A + B H
12 axpjcl H C A + B proj H A + B H
13 3 6 12 sylancr A H B H proj H A + B H
14 simpl A H B H A H
15 simpr A H B H B H
16 1 chocunii proj H A + B H proj H A + B H A H B H A + B = proj H A + B + proj H A + B A + B = A + B proj H A + B = A proj H A + B = B
17 11 13 14 15 16 syl22anc A H B H A + B = proj H A + B + proj H A + B A + B = A + B proj H A + B = A proj H A + B = B
18 9 17 mpan2i A H B H A + B = proj H A + B + proj H A + B proj H A + B = A proj H A + B = B
19 8 18 mpd A H B H proj H A + B = A proj H A + B = B
20 19 simpld A H B H proj H A + B = A