Metamath Proof Explorer


Theorem pjfi

Description: The mapping of a projection. (Contributed by NM, 11-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjfn.1 H C
Assertion pjfi proj H :

Proof

Step Hyp Ref Expression
1 pjfn.1 H C
2 1 pjfni proj H Fn
3 1 pjrni ran proj H = H
4 1 chssii H
5 3 4 eqsstri ran proj H
6 df-f proj H : proj H Fn ran proj H
7 2 5 6 mpbir2an proj H :