Metamath Proof Explorer


Theorem pjhfval

Description: The value of the projection map. (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion pjhfval H C proj H = x ι z H | y H x = z + y

Proof

Step Hyp Ref Expression
1 id h = H h = H
2 fveq2 h = H h = H
3 2 rexeqdv h = H y h x = z + y y H x = z + y
4 1 3 riotaeqbidv h = H ι z h | y h x = z + y = ι z H | y H x = z + y
5 4 mpteq2dv h = H x ι z h | y h x = z + y = x ι z H | y H x = z + y
6 df-pjh proj = h C x ι z h | y h x = z + y
7 ax-hilex V
8 7 mptex x ι z H | y H x = z + y V
9 5 6 8 fvmpt H C proj H = x ι z H | y H x = z + y