Metamath Proof Explorer


Theorem pjhth

Description: Projection Theorem: Any Hilbert space vector A can be decomposed uniquely into a member x of a closed subspace H and a member y of the complement of the subspace. Theorem 3.7(i) of Beran p. 102 (existence part). (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion pjhth H C H + H =

Proof

Step Hyp Ref Expression
1 chsh H C H S
2 shocsh H S H S
3 shsss H S H S H + H
4 1 2 3 syl2anc2 H C H + H
5 fveq2 H = if H C H H = if H C H
6 5 rexeqdv H = if H C H z H x = y + z z if H C H x = y + z
7 6 rexeqbi1dv H = if H C H y H z H x = y + z y if H C H z if H C H x = y + z
8 7 imbi2d H = if H C H x y H z H x = y + z x y if H C H z if H C H x = y + z
9 ifchhv if H C H C
10 id x x
11 9 10 pjhthlem2 x y if H C H z if H C H x = y + z
12 8 11 dedth H C x y H z H x = y + z
13 shsel H S H S x H + H y H z H x = y + z
14 1 2 13 syl2anc2 H C x H + H y H z H x = y + z
15 12 14 sylibrd H C x x H + H
16 15 ssrdv H C H + H
17 4 16 eqssd H C H + H =