Metamath Proof Explorer


Theorem pjhtheu

Description: Projection Theorem: Any Hilbert space vector A can be decomposed uniquely into a member x of a closed subspace H and a member y of the complement of the subspace. Theorem 3.7(i) of Beran p. 102. See pjhtheu2 for the uniqueness of y . (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion pjhtheu H C A ∃! x H y H A = x + y

Proof

Step Hyp Ref Expression
1 pjhth H C H + H =
2 1 eleq2d H C A H + H A
3 chsh H C H S
4 shocsh H S H S
5 shsel H S H S A H + H x H y H A = x + y
6 3 4 5 syl2anc2 H C A H + H x H y H A = x + y
7 2 6 bitr3d H C A x H y H A = x + y
8 7 biimpa H C A x H y H A = x + y
9 3 4 syl H C H S
10 ocin H S H H = 0
11 3 10 syl H C H H = 0
12 pjhthmo H S H S H H = 0 * x x H y H A = x + y
13 3 9 11 12 syl3anc H C * x x H y H A = x + y
14 13 adantr H C A * x x H y H A = x + y
15 reu5 ∃! x H y H A = x + y x H y H A = x + y * x H y H A = x + y
16 df-rmo * x H y H A = x + y * x x H y H A = x + y
17 16 anbi2i x H y H A = x + y * x H y H A = x + y x H y H A = x + y * x x H y H A = x + y
18 15 17 bitri ∃! x H y H A = x + y x H y H A = x + y * x x H y H A = x + y
19 8 14 18 sylanbrc H C A ∃! x H y H A = x + y