Metamath Proof Explorer


Theorem pjhthlem2

Description: Lemma for pjhth . (Contributed by NM, 10-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses pjhth.1 H C
pjhth.2 φ A
Assertion pjhthlem2 φ x H y H A = x + y

Proof

Step Hyp Ref Expression
1 pjhth.1 H C
2 pjhth.2 φ A
3 2 adantr φ x H z H norm A - x norm A - z A
4 1 cheli x H x
5 4 ad2antrl φ x H z H norm A - x norm A - z x
6 hvsubcl A x A - x
7 3 5 6 syl2anc φ x H z H norm A - x norm A - z A - x
8 3 adantr φ x H z H norm A - x norm A - z y H A
9 simplrl φ x H z H norm A - x norm A - z y H x H
10 simpr φ x H z H norm A - x norm A - z y H y H
11 simplrr φ x H z H norm A - x norm A - z y H z H norm A - x norm A - z
12 eqid A - x ih y y ih y + 1 = A - x ih y y ih y + 1
13 1 8 9 10 11 12 pjhthlem1 φ x H z H norm A - x norm A - z y H A - x ih y = 0
14 13 ralrimiva φ x H z H norm A - x norm A - z y H A - x ih y = 0
15 1 chshii H S
16 shocel H S A - x H A - x y H A - x ih y = 0
17 15 16 ax-mp A - x H A - x y H A - x ih y = 0
18 7 14 17 sylanbrc φ x H z H norm A - x norm A - z A - x H
19 hvpncan3 x A x + A - x = A
20 5 3 19 syl2anc φ x H z H norm A - x norm A - z x + A - x = A
21 20 eqcomd φ x H z H norm A - x norm A - z A = x + A - x
22 oveq2 y = A - x x + y = x + A - x
23 22 rspceeqv A - x H A = x + A - x y H A = x + y
24 18 21 23 syl2anc φ x H z H norm A - x norm A - z y H A = x + y
25 df-hba = BaseSet + norm
26 eqid + norm = + norm
27 26 hhvs - = - v + norm
28 26 hhnm norm = norm CV + norm
29 eqid + H × H × H norm H = + H × H × H norm H
30 29 15 hhssba H = BaseSet + H × H × H norm H
31 26 hhph + norm CPreHil OLD
32 31 a1i φ + norm CPreHil OLD
33 26 29 hhsst H S + H × H × H norm H SubSp + norm
34 15 33 ax-mp + H × H × H norm H SubSp + norm
35 29 1 hhssbnOLD + H × H × H norm H CBan
36 elin + H × H × H norm H SubSp + norm CBan + H × H × H norm H SubSp + norm + H × H × H norm H CBan
37 34 35 36 mpbir2an + H × H × H norm H SubSp + norm CBan
38 37 a1i φ + H × H × H norm H SubSp + norm CBan
39 25 27 28 30 32 38 2 minveco φ ∃! x H z H norm A - x norm A - z
40 reurex ∃! x H z H norm A - x norm A - z x H z H norm A - x norm A - z
41 39 40 syl φ x H z H norm A - x norm A - z
42 24 41 reximddv φ x H y H A = x + y