Metamath Proof Explorer


Theorem pjhval

Description: Value of a projection. (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion pjhval H C A proj H A = ι x H | y H A = x + y

Proof

Step Hyp Ref Expression
1 pjhfval H C proj H = z ι x H | y H z = x + y
2 1 fveq1d H C proj H A = z ι x H | y H z = x + y A
3 eqeq1 z = A z = x + y A = x + y
4 3 rexbidv z = A y H z = x + y y H A = x + y
5 4 riotabidv z = A ι x H | y H z = x + y = ι x H | y H A = x + y
6 eqid z ι x H | y H z = x + y = z ι x H | y H z = x + y
7 riotaex ι x H | y H A = x + y V
8 5 6 7 fvmpt A z ι x H | y H z = x + y A = ι x H | y H A = x + y
9 2 8 sylan9eq H C A proj H A = ι x H | y H A = x + y