Metamath Proof Explorer


Theorem pjidmi

Description: A projection is idempotent. Property (ii) of Beran p. 109. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1 H C
pjidm.2 A
Assertion pjidmi proj H proj H A = proj H A

Proof

Step Hyp Ref Expression
1 pjidm.1 H C
2 pjidm.2 A
3 1 2 pjclii proj H A H
4 1 2 pjhclii proj H A
5 1 4 pjchi proj H A H proj H proj H A = proj H A
6 3 5 mpbi proj H proj H A = proj H A