Metamath Proof Explorer


Theorem pjige0i

Description: The inner product of a projection and its argument is nonnegative. (Contributed by NM, 2-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypothesis pjadjt.1 H C
Assertion pjige0i A 0 proj H A ih A

Proof

Step Hyp Ref Expression
1 pjadjt.1 H C
2 1 pjhcli A proj H A
3 normcl proj H A norm proj H A
4 2 3 syl A norm proj H A
5 4 sqge0d A 0 norm proj H A 2
6 1 pjinormi A proj H A ih A = norm proj H A 2
7 5 6 breqtrrd A 0 proj H A ih A