Metamath Proof Explorer


Theorem pjinormi

Description: The inner product of a projection and its argument is the square of the norm of the projection. Remark in Halmos p. 44. (Contributed by NM, 2-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypothesis pjadjt.1 H C
Assertion pjinormi A proj H A ih A = norm proj H A 2

Proof

Step Hyp Ref Expression
1 pjadjt.1 H C
2 fveq2 A = if A A 0 proj H A = proj H if A A 0
3 id A = if A A 0 A = if A A 0
4 2 3 oveq12d A = if A A 0 proj H A ih A = proj H if A A 0 ih if A A 0
5 2fveq3 A = if A A 0 norm proj H A = norm proj H if A A 0
6 5 oveq1d A = if A A 0 norm proj H A 2 = norm proj H if A A 0 2
7 4 6 eqeq12d A = if A A 0 proj H A ih A = norm proj H A 2 proj H if A A 0 ih if A A 0 = norm proj H if A A 0 2
8 ifhvhv0 if A A 0
9 1 8 pjinormii proj H if A A 0 ih if A A 0 = norm proj H if A A 0 2
10 7 9 dedth A proj H A ih A = norm proj H A 2