Metamath Proof Explorer


Theorem pjinormii

Description: The inner product of a projection and its argument is the square of the norm of the projection. Remark in Halmos p. 44. (Contributed by NM, 13-Aug-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1 H C
pjidm.2 A
Assertion pjinormii proj H A ih A = norm proj H A 2

Proof

Step Hyp Ref Expression
1 pjidm.1 H C
2 pjidm.2 A
3 1 2 pjhclii proj H A
4 3 normsqi norm proj H A 2 = proj H A ih proj H A
5 1 3 2 pjadjii proj H proj H A ih A = proj H A ih proj H A
6 1 2 pjidmi proj H proj H A = proj H A
7 6 oveq1i proj H proj H A ih A = proj H A ih A
8 4 5 7 3eqtr2ri proj H A ih A = norm proj H A 2