Metamath Proof Explorer


Theorem pjmulii

Description: Projection of (scalar) product is product of projection. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1 HC
pjidm.2 A
pjmul.3 C
Assertion pjmulii projHCA=CprojHA

Proof

Step Hyp Ref Expression
1 pjidm.1 HC
2 pjidm.2 A
3 pjmul.3 C
4 1 2 pjpji A=projHA+projHA
5 4 oveq2i CA=CprojHA+projHA
6 1 2 pjhclii projHA
7 1 choccli HC
8 7 2 pjhclii projHA
9 3 6 8 hvdistr1i CprojHA+projHA=CprojHA+CprojHA
10 5 9 eqtri CA=CprojHA+CprojHA
11 10 fveq2i projHCA=projHCprojHA+CprojHA
12 1 chshii HS
13 1 2 pjclii projHAH
14 shmulcl HSCprojHAHCprojHAH
15 12 3 13 14 mp3an CprojHAH
16 7 chshii HS
17 7 2 pjclii projHAH
18 shmulcl HSCprojHAHCprojHAH
19 16 3 17 18 mp3an CprojHAH
20 1 pjcompi CprojHAHCprojHAHprojHCprojHA+CprojHA=CprojHA
21 15 19 20 mp2an projHCprojHA+CprojHA=CprojHA
22 11 21 eqtri projHCA=CprojHA