Metamath Proof Explorer


Theorem pjnel

Description: If a vector does not belong to subspace, the norm of its projection is less than its norm. (Contributed by NM, 2-Nov-1999) (New usage is discouraged.)

Ref Expression
Assertion pjnel H C A ¬ A H norm proj H A < norm A

Proof

Step Hyp Ref Expression
1 eleq2 H = if H C H A H A if H C H
2 1 notbid H = if H C H ¬ A H ¬ A if H C H
3 fveq2 H = if H C H proj H = proj if H C H
4 3 fveq1d H = if H C H proj H A = proj if H C H A
5 4 fveq2d H = if H C H norm proj H A = norm proj if H C H A
6 5 breq1d H = if H C H norm proj H A < norm A norm proj if H C H A < norm A
7 2 6 bibi12d H = if H C H ¬ A H norm proj H A < norm A ¬ A if H C H norm proj if H C H A < norm A
8 eleq1 A = if A A 0 A if H C H if A A 0 if H C H
9 8 notbid A = if A A 0 ¬ A if H C H ¬ if A A 0 if H C H
10 2fveq3 A = if A A 0 norm proj if H C H A = norm proj if H C H if A A 0
11 fveq2 A = if A A 0 norm A = norm if A A 0
12 10 11 breq12d A = if A A 0 norm proj if H C H A < norm A norm proj if H C H if A A 0 < norm if A A 0
13 9 12 bibi12d A = if A A 0 ¬ A if H C H norm proj if H C H A < norm A ¬ if A A 0 if H C H norm proj if H C H if A A 0 < norm if A A 0
14 ifchhv if H C H C
15 ifhvhv0 if A A 0
16 14 15 pjneli ¬ if A A 0 if H C H norm proj if H C H if A A 0 < norm if A A 0
17 7 13 16 dedth2h H C A ¬ A H norm proj H A < norm A