Metamath Proof Explorer


Theorem pjnorm

Description: The norm of the projection is less than or equal to the norm. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion pjnorm H C A norm proj H A norm A

Proof

Step Hyp Ref Expression
1 fveq2 H = if H C H proj H = proj if H C H
2 1 fveq1d H = if H C H proj H A = proj if H C H A
3 2 fveq2d H = if H C H norm proj H A = norm proj if H C H A
4 3 breq1d H = if H C H norm proj H A norm A norm proj if H C H A norm A
5 2fveq3 A = if A A 0 norm proj if H C H A = norm proj if H C H if A A 0
6 fveq2 A = if A A 0 norm A = norm if A A 0
7 5 6 breq12d A = if A A 0 norm proj if H C H A norm A norm proj if H C H if A A 0 norm if A A 0
8 ifchhv if H C H C
9 ifhvhv0 if A A 0
10 8 9 pjnormi norm proj if H C H if A A 0 norm if A A 0
11 4 7 10 dedth2h H C A norm proj H A norm A