Metamath Proof Explorer


Theorem pjnormi

Description: The norm of the projection is less than or equal to the norm. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjnorm.1 H C
pjnorm.2 A
Assertion pjnormi norm proj H A norm A

Proof

Step Hyp Ref Expression
1 pjnorm.1 H C
2 pjnorm.2 A
3 1 2 pjhclii proj H A
4 1 choccli H C
5 4 2 pjhclii proj H A
6 3 5 pm3.2i proj H A proj H A
7 2 2 pjorthi H C proj H A ih proj H A = 0
8 1 7 ax-mp proj H A ih proj H A = 0
9 normpyc proj H A proj H A proj H A ih proj H A = 0 norm proj H A norm proj H A + proj H A
10 6 8 9 mp2 norm proj H A norm proj H A + proj H A
11 1 2 pjpji A = proj H A + proj H A
12 11 fveq2i norm A = norm proj H A + proj H A
13 10 12 breqtrri norm proj H A norm A