Metamath Proof Explorer


Theorem pjoc2

Description: Projection of a vector in the orthocomplement of the projection subspace. Lemma 4.4(iii) of Beran p. 111. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion pjoc2 H C A A H proj H A = 0

Proof

Step Hyp Ref Expression
1 fveq2 H = if H C H 0 H = if H C H 0
2 1 eleq2d H = if H C H 0 A H A if H C H 0
3 fveq2 H = if H C H 0 proj H = proj if H C H 0
4 3 fveq1d H = if H C H 0 proj H A = proj if H C H 0 A
5 4 eqeq1d H = if H C H 0 proj H A = 0 proj if H C H 0 A = 0
6 2 5 bibi12d H = if H C H 0 A H proj H A = 0 A if H C H 0 proj if H C H 0 A = 0
7 eleq1 A = if A A 0 A if H C H 0 if A A 0 if H C H 0
8 fveqeq2 A = if A A 0 proj if H C H 0 A = 0 proj if H C H 0 if A A 0 = 0
9 7 8 bibi12d A = if A A 0 A if H C H 0 proj if H C H 0 A = 0 if A A 0 if H C H 0 proj if H C H 0 if A A 0 = 0
10 h0elch 0 C
11 10 elimel if H C H 0 C
12 ifhvhv0 if A A 0
13 11 12 pjoc2i if A A 0 if H C H 0 proj if H C H 0 if A A 0 = 0
14 6 9 13 dedth2h H C A A H proj H A = 0