Metamath Proof Explorer


Theorem pjoc2i

Description: Projection of a vector in the orthocomplement of the projection subspace. Lemma 4.4(iii) of Beran p. 111. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjoc2.1 H C
pjoc2.2 A
Assertion pjoc2i A H proj H A = 0

Proof

Step Hyp Ref Expression
1 pjoc2.1 H C
2 pjoc2.2 A
3 1 choccli H C
4 3 2 pjoc1i A H proj H A = 0
5 1 pjococi H = H
6 5 fveq2i proj H = proj H
7 6 fveq1i proj H A = proj H A
8 7 eqeq1i proj H A = 0 proj H A = 0
9 4 8 bitri A H proj H A = 0