Metamath Proof Explorer


Theorem pjocini

Description: Membership of projection in orthocomplement of intersection. (Contributed by NM, 21-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypotheses pjocin.1 G C
pjocin.2 H C
Assertion pjocini A G H proj G A G H

Proof

Step Hyp Ref Expression
1 pjocin.1 G C
2 pjocin.2 H C
3 1 2 chincli G H C
4 3 choccli G H C
5 4 cheli A G H A
6 pjpo G C A proj G A = A - proj G A
7 1 5 6 sylancr A G H proj G A = A - proj G A
8 inss1 G H G
9 3 1 chsscon3i G H G G G H
10 8 9 mpbi G G H
11 1 choccli G C
12 11 pjcli A proj G A G
13 5 12 syl A G H proj G A G
14 10 13 sselid A G H proj G A G H
15 4 chshii G H S
16 shsubcl G H S A G H proj G A G H A - proj G A G H
17 15 16 mp3an1 A G H proj G A G H A - proj G A G H
18 14 17 mpdan A G H A - proj G A G H
19 7 18 eqeltrd A G H proj G A G H