Metamath Proof Explorer


Theorem pjoi0i

Description: The inner product of projections on orthogonal subspaces vanishes. (Contributed by NM, 1-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjoi0.1 G C
pjoi0.2 H C
pjoi0.3 A
Assertion pjoi0i G H proj G A ih proj H A = 0

Proof

Step Hyp Ref Expression
1 pjoi0.1 G C
2 pjoi0.2 H C
3 pjoi0.3 A
4 1 2 3 3pm3.2i G C H C A
5 pjoi0 G C H C A G H proj G A ih proj H A = 0
6 4 5 mpan G H proj G A ih proj H A = 0