Metamath Proof Explorer


Theorem pjoml3

Description: Variation of orthomodular law. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion pjoml3 A C B C B A A A B = B

Proof

Step Hyp Ref Expression
1 sseq2 A = if A C A B A B if A C A
2 id A = if A C A A = if A C A
3 fveq2 A = if A C A A = if A C A
4 3 oveq1d A = if A C A A B = if A C A B
5 2 4 ineq12d A = if A C A A A B = if A C A if A C A B
6 5 eqeq1d A = if A C A A A B = B if A C A if A C A B = B
7 1 6 imbi12d A = if A C A B A A A B = B B if A C A if A C A if A C A B = B
8 sseq1 B = if B C B B if A C A if B C B if A C A
9 oveq2 B = if B C B if A C A B = if A C A if B C B
10 9 ineq2d B = if B C B if A C A if A C A B = if A C A if A C A if B C B
11 id B = if B C B B = if B C B
12 10 11 eqeq12d B = if B C B if A C A if A C A B = B if A C A if A C A if B C B = if B C B
13 8 12 imbi12d B = if B C B B if A C A if A C A if A C A B = B if B C B if A C A if A C A if A C A if B C B = if B C B
14 ifchhv if A C A C
15 ifchhv if B C B C
16 14 15 pjoml3i if B C B if A C A if A C A if A C A if B C B = if B C B
17 7 13 16 dedth2h A C B C B A A A B = B