Metamath Proof Explorer


Theorem pjopythi

Description: Pythagorean theorem for projections on orthogonal subspaces. (Contributed by NM, 1-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjoi0.1 G C
pjoi0.2 H C
pjoi0.3 A
Assertion pjopythi G H norm proj G A + proj H A 2 = norm proj G A 2 + norm proj H A 2

Proof

Step Hyp Ref Expression
1 pjoi0.1 G C
2 pjoi0.2 H C
3 pjoi0.3 A
4 1 2 3 pjoi0i G H proj G A ih proj H A = 0
5 1 3 pjhclii proj G A
6 2 3 pjhclii proj H A
7 5 6 normpythi proj G A ih proj H A = 0 norm proj G A + proj H A 2 = norm proj G A 2 + norm proj H A 2
8 4 7 syl G H norm proj G A + proj H A 2 = norm proj G A 2 + norm proj H A 2