Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Properties of Hilbert subspaces
Projectors (cont.)
pjpj0i
Metamath Proof Explorer
Description: Decomposition of a vector into projections. (Contributed by NM , 26-Oct-1999) (Revised by Mario Carneiro , 15-May-2014)
(New usage is discouraged.)
Ref
Expression
Hypotheses
pjcli.1
⊢ H ∈ C ℋ
pjcli.2
⊢ A ∈ ℋ
Assertion
pjpj0i
⊢ A = proj ℎ ⁡ H ⁡ A + ℎ proj ℎ ⁡ ⊥ ⁡ H ⁡ A
Proof
Step
Hyp
Ref
Expression
1
pjcli.1
⊢ H ∈ C ℋ
2
pjcli.2
⊢ A ∈ ℋ
3
axpjpj
⊢ H ∈ C ℋ ∧ A ∈ ℋ → A = proj ℎ ⁡ H ⁡ A + ℎ proj ℎ ⁡ ⊥ ⁡ H ⁡ A
4
1 2 3
mp2an
⊢ A = proj ℎ ⁡ H ⁡ A + ℎ proj ℎ ⁡ ⊥ ⁡ H ⁡ A