Metamath Proof Explorer


Theorem pjpythi

Description: Pythagorean theorem for projections. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjnorm.1 H C
pjnorm.2 A
Assertion pjpythi norm A 2 = norm proj H A 2 + norm proj H A 2

Proof

Step Hyp Ref Expression
1 pjnorm.1 H C
2 pjnorm.2 A
3 1 2 pjpji A = proj H A + proj H A
4 3 fveq2i norm A = norm proj H A + proj H A
5 4 oveq1i norm A 2 = norm proj H A + proj H A 2
6 1 chshii H S
7 shococss H S H H
8 1 choccli H C
9 1 8 2 pjopythi H H norm proj H A + proj H A 2 = norm proj H A 2 + norm proj H A 2
10 6 7 9 mp2b norm proj H A + proj H A 2 = norm proj H A 2 + norm proj H A 2
11 5 10 eqtri norm A 2 = norm proj H A 2 + norm proj H A 2