Metamath Proof Explorer


Theorem pjrni

Description: The range of a projection. Part of Theorem 26.2 of Halmos p. 44. (Contributed by NM, 30-Oct-1999) (Revised by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Hypothesis pjfn.1 H C
Assertion pjrni ran proj H = H

Proof

Step Hyp Ref Expression
1 pjfn.1 H C
2 1 pjfni proj H Fn
3 1 pjcli x proj H x H
4 3 rgen x proj H x H
5 ffnfv proj H : H proj H Fn x proj H x H
6 2 4 5 mpbir2an proj H : H
7 frn proj H : H ran proj H H
8 6 7 ax-mp ran proj H H
9 pjid H C y H proj H y = y
10 1 9 mpan y H proj H y = y
11 1 cheli y H y
12 fnfvelrn proj H Fn y proj H y ran proj H
13 2 11 12 sylancr y H proj H y ran proj H
14 10 13 eqeltrrd y H y ran proj H
15 14 ssriv H ran proj H
16 8 15 eqssi ran proj H = H