Metamath Proof Explorer


Theorem pjsubii

Description: Projection of vector difference is difference of projections. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1 H C
pjidm.2 A
pjsub.3 B
Assertion pjsubii proj H A - B = proj H A - proj H B

Proof

Step Hyp Ref Expression
1 pjidm.1 H C
2 pjidm.2 A
3 pjsub.3 B
4 neg1cn 1
5 4 3 hvmulcli -1 B
6 1 2 5 pjaddii proj H A + -1 B = proj H A + proj H -1 B
7 1 3 4 pjmulii proj H -1 B = -1 proj H B
8 7 oveq2i proj H A + proj H -1 B = proj H A + -1 proj H B
9 6 8 eqtri proj H A + -1 B = proj H A + -1 proj H B
10 2 3 hvsubvali A - B = A + -1 B
11 10 fveq2i proj H A - B = proj H A + -1 B
12 1 2 pjhclii proj H A
13 1 3 pjhclii proj H B
14 12 13 hvsubvali proj H A - proj H B = proj H A + -1 proj H B
15 9 11 14 3eqtr4i proj H A - B = proj H A - proj H B